首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219173篇
  免费   21700篇
  国内免费   11104篇
电工技术   15629篇
技术理论   14篇
综合类   15173篇
化学工业   34363篇
金属工艺   12284篇
机械仪表   14149篇
建筑科学   17206篇
矿业工程   6873篇
能源动力   6540篇
轻工业   15409篇
水利工程   4470篇
石油天然气   12585篇
武器工业   2031篇
无线电   26739篇
一般工业技术   25699篇
冶金工业   9949篇
原子能技术   2348篇
自动化技术   30516篇
  2024年   517篇
  2023年   4289篇
  2022年   7449篇
  2021年   11058篇
  2020年   8319篇
  2019年   6495篇
  2018年   7179篇
  2017年   7979篇
  2016年   7137篇
  2015年   9701篇
  2014年   11950篇
  2013年   14172篇
  2012年   15740篇
  2011年   16459篇
  2010年   14101篇
  2009年   13281篇
  2008年   12743篇
  2007年   11670篇
  2006年   11555篇
  2005年   9981篇
  2004年   6567篇
  2003年   5426篇
  2002年   4855篇
  2001年   4314篇
  2000年   4117篇
  1999年   4620篇
  1998年   3748篇
  1997年   3180篇
  1996年   2938篇
  1995年   2415篇
  1994年   1960篇
  1993年   1392篇
  1992年   1124篇
  1991年   837篇
  1990年   603篇
  1989年   493篇
  1988年   387篇
  1987年   259篇
  1986年   224篇
  1985年   132篇
  1984年   114篇
  1983年   77篇
  1982年   89篇
  1981年   71篇
  1980年   72篇
  1979年   40篇
  1978年   25篇
  1977年   25篇
  1976年   26篇
  1951年   17篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
31.
岳利涛  郝杨  谭朝洪  曹汉鹏 《净水技术》2021,40(10):160-166
以河北某园区污水处理厂提标改造工程为研究对象,通过对污水厂来水组成调研、取样、化验分析、试验,确定水解酸化+MBR+臭氧催化氧化组合工艺为主要设计方案.根据调试及运行结果,MBR组合工艺系统运行稳定,出水达到《地表水环境质量标准》(GB 3838—2002)地表水Ⅳ类标准(除TN外),根据长期实际运行效果,出水CODCr≤30 mg/L、氨氮≤1 mg/L、TN≤10 mg/L、TP≤10 mg/L,SS≤0.7 mg/L,出水回用于当地景观水体.本项目的设计与实施为类似工业园区污水处理厂尤其是存在较高难降解有机物、TN去除率要求高的污水厂提标改造提供了参考经验.  相似文献   
32.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   
33.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
34.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
35.
Technical development in electronic devices is frequently stifled by their insufficient capacity and cyclic stability of energy-storage devices. The nano-structured materials have sensational importance for providing novel and optimized combination to overcome exiting boundaries and provide efficient energy storage systems. Metal hydroxide materials with high capacity for pseudo-capacitance properties have grabbed special attention. Lately, the blend of nickel and cobalt hydroxides has been considered as a favorable class of metallic hydroxide materials owing to their comparatively high capacitance and exceptional redox reversibility. The sulfonated carbon nanotube fluid (SCNTF) was prepared by the ion exchange method to be utilized as the exceptional templates due to astonishing specific surface area, ensuring the maximum utilization of the active material. The CoNi-layered double hydroxides (LDHs)/SCNTF core-shell nanocomposite was prepared by the simple solvothermal method. Structural analysis showed that the composite material had the high conductance of carbon materials, the pseudo-capacitance characteristics of metal hydroxides, and porous structure, which facilitates the ion shuttle when the electrolyte reacts with the active material. Electrochemical analysis results showed that CoNi-LDHs/SCNTF had excellent rate performance, reversible charge-discharge properties and cycle stability. It exhibited an extreme specific capacity of 1190.5 F g?1 at a current density of 1 A g?1; whereas specific capacity remained 953.7 F g?1 at the current density was 10 A g?1. In addition, the capacity retention rate after 5000 charge-discharge cycles at a current density of 20 A g?1 was 81.0%. The results indicated that the CoNi-LDHs/SCNTF core-shell nanocomposite material is cost efficient and an effective substitute in energy storage applications.  相似文献   
36.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
37.
Designing a semiconductor-based heterostructure photocatalyst for achieving the efficient separation of photogenerated electron-hole pairs is highly important for enhancing H2 releasing photocatalysis. Here, a new class of Ni1−xCoxSe2–C/ZnIn2S4 hierarchical nanocages with abundant and compact ZnIn2S4 nanosheets/Ni1−xCoxSe2C nanosheets 2D/2D hetero–interfaces, is designed and synthesized. The constructed heterostructure photocatalyst exposes rich hetero-junctions, supplying the broad and short transfer paths for charge carriers. The close contacts of these two kinds of nanosheets induce a strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C, improving the separation and transfer of photo-generated electron-hole pairs. As a consequence, the distinctive Ni1−xCoxSe2 C/ZnIn2S4 hierarchical nanocages without using additional noble-metal cocatalysts, display remarkable H2-relaesing photocatalytic activity with a rate of 5.10 mmol g−1 h−1 under visible light irradiation, which is 6.2 and 30 times higher than those of fresh ZnIn2S4 nanosheets and bare Ni1−xCoxSe2 C nanocages, respectively. Spectroscopic characterizations and theory calculations reveal that the strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C 2D/2D hetero-interfaces can powerfully promote the separation of photo-generated charge carriers and the electrons transfer from ZnIn2S4 to Ni1−xCoxSe2 C.  相似文献   
38.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.  相似文献   
39.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
40.
SrF2 transparent ceramic is a promising upconversion material due to the low phonon energy. The effect of different sintering temperatures on Er:SrF2 transparent ceramics was investigated. The suitable sintering temperature for Er:SrF2 transparent ceramics was 900 °C by hot-pressed sintering in this study. High quality of Er:SrF2 transparent ceramics with different doping concentrations were obtained. The upconversion luminescence spectra and decay behavior were compared between Er:SrF2 and Er:CaF2 transparent ceramics with different Er3+ doping concentration. The green emission of 5 at.% Er:SrF2 ceramic was much stronger than that of 5 at.% Er:CaF2 ceramic, while the red emission of Er:SrF2 ceramic was almost the same as that of Er:CaF2 ceramic. The upconversion luminescence lifetime of Er:SrF2 transparent ceramics was longer than that of Er:CaF2.All the results indicated Er:SrF2 transparent ceramics was a candidate for green fluorescent upconversion materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号